

Л.Н. Никитин

Учреждение российской академии наук Институт элементоорганических соединений им. А.Н.Несмеянова РАН, Москва Отчет о работе за 2008-2010 гг.

Направления работы

1. Синтез в СК-СО₂

-полимеры;

-полимер-полимерные композиты;

-металлсодержащие композиты;

2. Изучение растворимости в СК-СО₂

-фторполимеры;

3. Модифицирование полимеров в СК-СО₂

-увеличение свободного объема; -порообразование фторполимеров; -крейзинг полимеров;

4. Сочетание методов СК-СО₂ и МПС

-«Форум»; -ПТФЭ;

5. Придание материалам новых свойств

-гидрофобизация;

-гидрофилизация;

-регулируемая пластичность;

6. «Свежие» направления

-модифицирование с возникновением кристаллических структур; - использование СК-СО₂ для модификации полимеров комплексами переходных металлов

1. Синтез в СК-СО₂ Полимеры: полианилин

(NH₄)₂S₂O₈ CK. CO₂ t = 70°C P = 350 атм. T = 120 мин. R SO₃H

R.

NH

 \oplus

2XY

NH

Спектры КР образцов ПАНИ, полученных в среде СК-СО₂ (λ_{exc} = 632.8 нм). Спектры **a**) и **б**) зарегистрированы при одинаковой мощности лазера 0.005 мВт.

′1-Y

Х

NΗ

 \oplus

R

1. Синтез в СК-СО₂ Полимеры

Новые электролюминесцентные фенилированные полифлуорены

1. Синтез в СК-СО₂ Полимеры: поливинилпирролидон

Обнаружено появление сигналов олигомеров при 1.76 м. д. – CH₂CH₂CH₂, 3.27 м. д. – CH₂CH₂N в пиролидоновом фрагменте и при 3.91 м. д. – CH в главной цепи; сигнал CH₂CO при 2.2 м. д. перекрывается с интенсивными сигналами винилпирролидона; сигналы при 7, 1.43 и 1.66 м. д. относятся к CH=CH₂, циклогексану и азоиозобутиронитрилу, соответственно. Спектр через 90 мин

позволяет установить концентрацию протонов в остатке жидкого мономера. Вид спектра обусловлен плохой растворимостью ПВП в СК-СО₂ и вязкой консистенцией образовавшегося полимера.

Разработана, изготовлена и испытана эффективная ячейка для выполнения экспериментов ЯМР при высоких давлениях и повышенных температурах. Впервые продемонстрирована возможность *in-situ* мониторинга процессов полимеризации в сверхкритическом диоксиде углерода методом ЯМР ¹Н. Показано, что при проведении полимеризации поливинилпирролидона в СК-СО₂, происходит замедление скорости процесса в связи с возрастанием вязкости и гетерогенности реакционной массы, и, как следствие, из-за снижения эффективной диффузии ингредиентов реакционной смеси. Показано, что эффективность полимеризации винилпирролидона в СК-СО₂ значительно выше установленной ранее

1. Синтез в СК-СО₂ Полимер-полимерные композиты

Электроактивные полимер-полимерные композиционные материалы

1. Синтез в СК-СО₂ Металлсодержащие композиты

Намагниченность в поле 2,5 КЭ, Гс см³/г

Продолжительность нагрева образца при 300 °C, час

2. Изучение растворимости в СК-СО₂ -фторполимеры;

• m ≈ 10-100

Концевые группы: (единицы процентов)

Термогазодинамический метод получения ультрадисперсного политетрафторэтилена (УПТФЭ) – создание аэрозольной смеси мономеров и олигомеров, конденсируемой в ультрадисперсный порошок. «Форум» представляет собой смесь ультрадисперсных сферических частиц со среднестатистическим диаметром порядка 1000 нм

2. Изучение растворимости в СК-СО₂ -фторполимеры;

СЭМ

Исходный

60⁰С, 60 МПа

ΤΓΑ

ПЭМ

2. Изучение растворимости в СК-СО₂ -фторполимеры;

3. Модифицирование полимеров в СК-СО₂ Порообразование фторполимеров

Процесс порообразования

Направленное создание пористых структур

Создание пористых структур с различной морфологией

3. Модифицирование полимеров в СК-СО₂ Порообразование фторполимеров

Φ-4

3. Модифицирование полимеров в СК-СО₂ Крейзинг

Эффе́кт Ре́биндера — (адсорбционное понижение прочности), изменение механических свойств твёрдых тел вследствие физикохимических процессов, вызывающих уменьшение поверхностной (межфазной) энергии тела. Проявляется в снижении прочности и возникновении хрупкости, уменьшении долговечности, облегчения диспергирования. Эффект открыт П. А. Ребиндером в 1928 году

3. Модифицирование полимеров в СК-СО₂ Крейзинг

Зависимость приращения объема образцов ПП (DV/V0) от величины относительной деформации полимера в CO₂ при давлении 10 (■), 20 (▲) и 30 (▼)

МПа.

СО₂ при 10 МПа и 35°С

Степень деформаци и, %	DV/V ₀	Площадь поверхности фибрилл, м ² /см ³	Объемная концентаци я фибрилл	Диаметр фибрилл , нм
50	0.34	75	0.34	12
100	0.4	90	0.38	11
150	0.37	130	0.43	11

По данным малоуглового рентгеновского рассеяния диаметр фибрилл, соединяющий стенки крейзов, образующихся в образцах ПЭВП и ОПП, составляет 8-12 нм, а удельная поверхность фибрилл достигает величины 100 – 150 м²/г.

Выводы

- 1. Показано, что деформация частично-кристаллических полиолефинов полиэтилена высокой плотности и изотактического полипропилена - в сверхкритическом диоксиде углерода приводит к созданию в них развитой системы сквозных пор нанометрового уровня. Средний диаметр пор, рассчитанный из данных проницаемости по уравнению Пуазейля, составил 4 -10 нм.
- 2. Установлено, что формирование открытопористой структуры нанометрового уровня связано с образованием в полиолефинах системы крейзов, локализованных преимущественно в межламелярных областях частично-кристаллических полимеров.
- 3. Показано, что крейзы, образующиеся в частично-кристаллических полимерах в этих условиях, обладают высокодисперсной структурой и высокой удельной поверхностью. По данным малоуглового рентгеновского рассеяния диаметр фибрилл, соединяющий стенки крейзов, образующихся в образцах ПЭВП и ОПП, составляет 8-12 нм, а удельная поверхность фибрилл достигает величины 100 – 150 м²/г.
- 4. Максимальная эффективность CO₂ как крейзующего агента для ОПП, наблюдается в сверхкритической области давлений (10-30 МПа), т.е. в той области, где плотность газа характеризуется высокими значениями, приближающимися к плотности низкомолекулярных жидкостей.

Рис. 1. Данные РЭМ для образцов УПТФЭ до (а), по-

сле одного (б) и четырех (в) воздействий при МИМ.

4. Сочетание СК-СО₂ и МПС «Форум», метод «импульсного» модифицирования

Изменения свойств частиц УПТФЭ после воздействия СК-СО₂

Среднестатистический размер частиц: 1.34 \pm 0.11 мкм; После 1 МИМ 0.88 \pm 0.04 мкм; После 4 МИМ – бимодальное распределение: 0.78 \pm 0.03 и 2.17 \pm 0.23 мкм S_{БЭТ} \uparrow в 2.1 раза; S_{микро} (до 6 нм) \downarrow в 1.7 раза; S_{мезо} (6-100 нм) \uparrow в 3.8 раза.

Число воздей- ствий при МИМ	S _{БЭТ} , м²/г	$K_{\mathrm{E}\mathrm{ST}}$	S _{микро} , м ² /г	$S_{\rm meso},{\rm m}^2\!/{\rm r}$	K _t	<i>D</i> , нм
-	0.74	0.9961	0.390	0.35	0.9980	10.85
Одно	1.20	0.9922	0.333	0.863	0.9986	5.96
Два	1.45	0.9958	0.313	1.134	0.9988	3.96
Четыре	1.57	0.9994	0.228	1.338	0.9991	3.32

Примечание. К_{БЭТ} – коэффициент корреляции; К₁ – коэффициент корреляции для t-метода, по которому вычисляли некоторые параметры микропор; D – диаметр пор, определенный из дифференциальной кривой распределения по объему.

Модифицирование УПТФЭ после МИМ с помощью МПС

TWIN HIGH POWER

MODULAR DESIGN

1 – линия подачи инертного газа; 2 – азотная ловушка; 3 - базовый блок; 4 - водоохлаждаемые тоководы; 5 – линия подачи органического реагента; 6 – линия сифонирования продуктов; 7 – реактор из кварцевого стекла (объем 5л); 8 емкость для жидкого азота; 9.-.резистивный испаритель; 10 - твердая матрица низкотемпературного соконденсата; 11 вакуумное уплотнение

VAPOUR SYNTHESIS EQUIPMENT TYPE **VSP 500 EVAPORATION SOURCES** STATIC REACTION VESSEL

FOR SYNTHESIS OF A WIDE RANGE OF NEW MATERIALS

Данные ПЭМ для УПТФЭ

4. Сочетание СК-СО₂ и МПС ПТФЭ (Беларусь)

Модифицирование волокнисто-пористых фторполимеров наночастицами серебра

Впервые разработан метод синтеза металлополимерных нанокомпозитов на основе ультрадисперсного политетрафторэтилена, совмещающий методики модифицирования порошковых диоксидом углерода и введения в них наночастиц металлов с помощью МПС

полимерных материалов сверхкритическим

5. Придание материалам новых свойств Гидрофобизация на примере тканей, кожи и меха

Венцель:

Касси и Бакстер:

 $\cos \tilde{\theta} k = -1 + f(1 + \cos \theta o)$

$$\cos \widetilde{\theta} k = k \cos \theta 0$$

где Θ_{κ} – угол смачивания шероховатой поверхности, **О**₀ – угол смачивания гладкой поверхности того же материала, *k*=S/S₀ – фактор шероховатости, определяемый отношением площадей реальной поверхности S к ее геометрической проекции на плоскость S₀; f - доля проекции смоченной площади на поверхность подложки С учетом частичного заполнения пор. При реализации гетерогенного режима смачивания достигаются значительно более высокие значения краевых углов смачивания и может быть реализован «эффект лотоса». Обработка «Форумом» повышает краевой угол смачивания на 19 -47 град. и снижает поверхностную энергию на 11 - 43%.

Взаимосвязь углов смачивания шероховатой и гладкой поверхностей: либо через фактор шероховатости к; либо через долю поверхности, контактирующей с каплей смачивающей жидкости

Преимущества СК СО₂ как растворителя при получении полимерных покрытий

- Низкая вязкость
- Высокие коэффициенты диффузии
- Отсутствие остаточного растворителя
- Отсутствие жидкой фазы при нормальных условиях, а также «высыхающих капель», поверхностного натяжения и капиллярных сил

Жидкий растворитель

Схема эксперимента

Морфология пленок «Форум» АСМ исследование

Пленки УПТФЭ, осажденные на подложки из пирографита (а) и слюды (б). Экспозиция при *T* = 65°C, *P* = 75 МПа в течение 3 ч, с последующим охлаждением до 55°C и декомпрессией. Топографические ACM-изображения получены в режиме прерывистого контакта на воздухе

- Нанометровый уровень толщины: 2-3.5 нм для слюды 2-8 нм для пирографита Низкая
- пизкая шероховатость поверхности: 0.4-0.6 нм (измерена для 0.5×0.5 мкм² областей)
- Высокая однородность и стабильность

М.О. Галлямов, В.М.Бузник, А.К. Цветников, Р.А.Винокур, Л.Н.Никитин и др. // Химическая физика **2004**, 23*(6)*, 76-80

5. Придание материалам новых свойств Гидрофобизация Показатели гидрофобности ПЭТФ ткани, обработанной раствором препарата «Форум» в с.к. СО₂ при различных давлениях и температуре

Условия	Удельное поверхностное	Краевой угол смачивания, град.		Время впитывания водяной капли, мин	
обработки содержание препаратом препарата «Форум» «Форум», г/м ²	до истирания	после истирания	до истирания	после истирания	
20 МПа, 90°С	0,752	137	133	>50	>50
40 МПа, 70°С	0,498	139	132	>50	>50
50 МПа, 70°С	0,925	138	136	>50	>50
50 МПа, 90°С	0,856	135	127	>50	>50
50 МПа,90°С, быстрая декомпрессия	2,196	130	139	>50	>50

5. Придание материалам новых свойств Гидрофобизация на примере тканей, кожи и меха

 $CF_3 - (CF_2)_5 - C(O) - HN - (CH_2)_3 - Si(OC_2H_5)_3$

2,2,3,3,4,4,5,5,6,6,7,7,7-тридекафтор-N-[3-(триэтоксисилил)пропил]-гептанамид

Гидрофобные свойства тканей различной природы, обработанных фторсодержащим силаном в СК-СО₂ при *T*= 50^oC, *P*=15 МПа.

*После термообработки капля легко скользит по поверхности, не наблюдается впитывания капли

_	Исходная	Модифицированная			
Вид ткани		до термообработки	после термообработки*		
Миткаль	0	129	143		
Джинса	0	132	136		
Шерсть	0	139	139		
Техническая ткань	0	133	145		

Схема формирования гидрофобного слоя на поверхности ткани

ОБРАБОТКА КЕРАМИЧЕСКИХ И МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Выводы:

Показано, что при обработке гидрофильных волокнистых материалов, керамики, металлов раствором ультрадисперсного др. Ν низкомолекулярного политетрафторэтилена фторсодержащего силана или B сверхкритическом диоксиде углерода на поверхности образуется ультратонкий слой фторполимера или силана, который обеспечивает придание различным материалам высокой степени гидрофобности

5. Придание материалам новых свойств Гидрофилизация

В качестве объектов выбирали СВМПЭ и ПВП. На первой стадии растворяли мономер ВП в СК-СО₂ и покрывали частицы ПЭ. Затем образцы облучали гамма-излучением ⁶⁰Со на установке «Гамматок-100» в течение различного времени (различная доза). При проведении полимеризации в среде жидкого СО₂ при дозе облучения выше 25 кГр происходило практически полное превращение ВП в частично-сшитый ПВП, слабо растворимого в воде.

Параметры сетчатой структуры радиационно-облученного ПВП

Расчет числа молей цепей заключенных между узлами сетки (v_o) проводили по уравнению Флори-Ренера: $\rho/v_e = V_1[(2/f) \phi_2 - \phi_0^{2/3}]$ $\phi_2^{1/3}$]/ln(1- ϕ_2) + ϕ_2 + $\chi \phi_2^2$, где φ_2 объемная доля полимера в равновесно **V**₁ набухшем геле, мольный объем растворителя, функциональность сетки, Фо - объемная доля полимера при сшивке, χ - параметр взаимодействия полимер растворитель.

Параметр	образцы		
	Образец 1 Д _{обл} = 25 кГр	Образец 2 Д _{обл} = 40 кГр	
доля геля W _г	0,145	0,025	
Весовая доля золя $W_{_3}$	0,855	0,975	
Объемная доля полимера в равновесно набухшем геле ϕ_2	0,003	0,007	
Объемная доля растворителя в равновесно набухшем геле ϕ_1	0,997	0,993	
ν _е число молей цепей, заключенных между узлами сетки	1,3396921×10 ⁻⁷	5,17464424 × 10 ⁻⁷	
Молекулярная масса золя M _w	4,7*10 ⁵	3,9*10 ⁵	

Плотность ПВП-1.19. χ= 0.480

5. Придание материалам новых свойств Регулируемая пластичность

До сих пор не предпринималось попыток исследований изменений пластичности композитов на основе гибкоцепных каучуков и жесткоцепных электроактивных полимеров. HO-[-Si(CH₃)(CH=CH₂)-O-]_n-H – CKTB HO-[-Si(CH₃)₂-O-]_n-H – CKTH В качестве катализатора выбран трихлорид железа. Установлено, что при добавлении FeCl₃ в образцы возрастает вязкость композиции, а при взаимодействии с пирролом происходит полимеризация последнего в матрицах и образуются пространственные структуры ППир. Податливость наполненных композиций измеряли на модифицированных весах Каргина методом пенетрации сферического индентора. Вычисление

величины податливости I, являющейся количественной мерой процесса ползучести, осуществляли по формуле Герца: I = (16/3) h^{3/2} r ^{1/2} F ⁻¹, где h – глубина пенетрации, r – радиус сферы, F – сила.

Выводы:

1. Установлено, что податливость кремнийорганических каучуков, модифицированных полипирролом, зависит от его количества в композите. 2. На основе низкомолекулярных кремнийорганических каучуков и полипиррола возможно формирование высоковязких композиционных материалов с регулируемой пластичностью при использовании методики «сверхкритического CO_2 ». 3. Показано, что в исследованном композите полипиррол распределен гетерогенно в объеме композита.

6. «Свежие» направления Модифицирование с возникновением кристаллических структур

Показано, что СК-СО₂ совместно с активными сульфогруппами полимерной мембраны Nafion® воздействовует на металлоценильные карбинолы общей формулы: $(C_6H_5)M(C_5H_4)CH_2OH$, где M = Fe, Ru. Эти соединения в кислых средах образуют металлоценилкарбениевые ионы Мс-СН₂⁺. После проведения эксперимента при 80°С пленка в случае Fe имела поглощение в диапазоне λ_{max} 600-630 нм, что характерно для катионов феррициния $C_5H_5FeC_5H_4X$, где X=H, CH_3 или CH_2OH , а в случае Ru - в диапазоне $\lambda_{max} \sim 500$ нм, что следует ожидать для ионов Mc-CH₂⁺. При оставлении на воздухе цвет пленки Nafion® в эксперименте с FcCH₂OH не изменился, но в течение 30-60 минут на поверхности пленки стали появляться светложелтые игольчатые монокристаллы, которые были исследованы рентгеноструктурным методом и оказались кристаллами простого эфира Fc-CH₂-O-CH₂-Fc. $Fc-CH_2-OH + Fc-CH_2^+ \rightarrow Fc-CH_2-O-CH_2-Fc + H^+$ $2Fc-CH_2^+ + H_2O \rightarrow Fc-CH_2-O-CH_2-Fc + 2H^+$

Впервые показано, что СК-СО₂, хотя и не принимает участия в процессе как реагент, играет роль промотора образования простого эфира из металлоценилкарбинола, что является новым процессом в химии металлоценов.

6. «Свежие» направления

Модифицирование с исчезновением кристаллических структур

рентгеновского излучения. а) ПВП; в) КП; с) физ. смесь 30% КП; d) импрегнированный образец 30% КП.

Процент выделения ПВП И3 для импрегнированных образцов (IP) И механических смесей

Впервые с помощью сочетания двух физико-химических подходов получены ΦМ биомедицинского назначения, включающие обезболивающий препарат наночастицы серебра, придающие материалу антибактериальные свойства. воздействия Путем на степень кристалличности КП удается направленно регулировать изменять кинетику И скорости выхода лекарственного препарата. Выполненные В работе будут исследования полезны при создании новых поколений гибридных функциональных наноматериалов С комплексом заданных медикобиологических характеристик.

МЕТАЛЛОРГАНИЧЕСКИЕ КОМПЛЕКСЫ

Название, аббревиатура	Структурная формула
Ме(II)-бис(1,1,1,3,5,5,5-гептафтор-2- иминопентен-2-амин-4-ат) Со(II)-ГФПДИ Си(II)- ГФПДИ Ni(II)- ГФПДИ	$Me \begin{bmatrix} H & CF_3 \\ N = C & C-F \\ N - C & CF_3 \end{bmatrix}_n$
Железо(III) -трис(1,1,1,3,5,5,5)-гептафтор- 2-иминопентен-2-амин-4-ат) Fe (III)- ГФПДИ	$Fe \begin{bmatrix} H & CF_3 \\ N=C & C-F \\ N-C & CF_3 \end{bmatrix} n$
Ферроцен (С ₅ Н ₅) ₂ Fe	ê - û
Ацетилацетанат палладия (II) Pd(acac) ₂	$Pd \begin{cases} O-C \\ O-C \\ O=C \\ CH_{3} \\ CH_{3} \\ 2 \end{cases}$
(1,5-циклооктадиен)- (гексафторацетилацетонат) серебра (I) Ag(COD)(HFA)	CF ₃ C=O CH C-O CF ₂
(1,5-циклооктадиен) диметилплатина (II) CODPt(CH ₃) ₂	Pt CH ₃

Планы дальнейшей работы

- Использование других СК-сред;

- Использование преимуществ сочетания полезных свойств полимеров, сверхкритических сред и металлоорганики;
- -Синтез новых МСС и изучение их растворимости в СК-СО₂;
- -Изучение совместимости различных соединений с полимерами при крейзинге;
 - -Освоение методов работы при давлениях до и выше 4 КБар;

-Идр.

Статистика за 2008-2010 годы: Опубликовано статей: 32 Патенты: 4 Участие в конференциях: 12 Участие в выполнении грантов РФФИ: 5 Участие в выполнении грантов ОХНМ: 2 Участие в выполнении грантов Президиума РАН: 1 Соруководитель аспирантов: 2 Консультация сторонних аспирантов: 2 Руководство дипломной работы: 3 Консультации студентов: 3 Участие в работе Ученых советов по защитам: 2 ИНЭОС РАН; КБГУ

Публикации 2008-2010 гг.

1.Yi-Ming Wang, Yu Pan, Yi-Long Wang, Guang-Peng Wu, Yan-Juan Wang, Lev N. Nikitin, Xiao-Bing Lu Bulk graft modification of polyolefin membranes by combining preirradiation-induced graft and supercritical CO2-swelling polymerization // J. Supercritical Fluids, 2008, v. 44, p. 62-70.

2.Никитин Л.Н., Васильков А.Ю., Хохлов А.Р., Бузник В.М. Металлополимерные композиты, полученные с помощью сверхкритического диоксида углерода и металлопарового синтеза. ДАН, 2008, т. 422, № 4, с. 501-505.

3.Дворикова Р.А., Никитин Л.Н., Коршак Ю.В., Шандицев В.А., Русанов А.Л., Абрамчук С.С., Хохлов А.Р. Новые магнитные наноматериалы на основе высокоразветвленных ферроценсодержащих полифениленов, синтезированных в жидком и сверхкритическом диоксиде углерода. ДАН, 2008, т. 422, № 3, с. 335-339. 4.Никитин Л.Н., Галлямов М.О., Саид-Галиев Э.Е., Хохлов А.Р., Бузник В.М. Сверхкритический диоксид углерода как активная среда для химических процессов с участием фторполимеров. Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И.Менделеева), 2008, т. LII, № 3, с. 56-65.

5.Гамзазаде А.И., Никитин Л.Н., Саид-Галиев Э.Е., Хохлов А.Р. Способ импрегнации гидроксилсодержащих полимеров. Патент РФ № 2318839, 2008.

6.Ронова И.А., Никитин Л.Н., Синицына О.В., Яминский И.В. Воздействие сверхкритического диоксида углерода на полимеры – эффективный метод увеличения свободного объема. Физика и химия обработки материалов, 2008, № 4, с. 18-25.

7.A. Vasil'kov, A. Naumkin, L. Nikitin, I. Volkov, V. Podshibikhin, G. Lisichkin Ultrahigh molecular weight polyethylene modified with silver nanoparticles prepared by metal-vapour synthesis. AIP Conference Proceedings, 2008, V. 1042, p. 255-257.

8.L.Nikitin, A.Vasilkov, Yu.Vopilov, M.Buzin, S.Abramchuk, V.Bouznik, A.Khokhlov Making of metal-polymeric composites. AIP Conference Proceedings, 2008, V. 1042, p. 249-251.

9.Патент № 2331532 Рос. Федерация : МПК7 В 60 R 13/00 / М. О. Галлямов, А. Р. Хохлов, В. М. Бузник, Л. Н. Никитин, А. Ю. Николаев; Водоотталкивающий элемент и способ получения гидрофобного покрытия; заявитель и патентообладатель Физический факультет Московского Государственного Университета им. М. В. Ломоносова. 2006134338/11; опубл. 20.08.2008, Бюл. 23. 15 с. : 2 ил.

10.L. N. Nikitin, A. Yu. Vasil'kov, A. V. Naumkin, A. R. Khokhlov, V. M. Bouznik Metal-polymeric composites prepared by supercritical carbon dioxide treatment and metal-vapor synthesis in: Success in Chemistry and Biochemistry: Mind's Flight in Time and Space, Volume 4 (A Festschrift in Honor of the 75th Birthday of Professor Gennady E. Zaikov), Editor: G.E.Zaikov, 2009, Nova Science Publishers, Inc. N.-Y., Chapter 48, pp. 579-590.

11.R. A. Dvorikova, L. N. Nikitin, Yu. V. Korshak, V. A. Shanditsev, A. L. Rusanov, S.S. Abramchuk, A. R. Khokhlov New magnetic nanomaterials of hyperbranched ferrocenecontaining polyphenylenes prepared in liquid and supercritical carbon dioxide in: Quantitative Foundation of Chemical Reactions, Editors: Gennady E. Zaikov (N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia) Tanislaw Grzegosz (Kaminski Institute of Natural Fibres, Poland) Lev N. Nikitin (A.N.Nesmeyanov Institute of Organoelement Compounds, Russia), 2009, Nova Science Publishers, Inc. N.-Y., Chapter 5, pp. 93-100.

12.Евсюкова Н.В., Мышковский А.М., Полухина Л.М., Серенко О.А., Никитин Л.Н., Музафаров А.М. Гидрофобизация тканей фторсодержащим силаном в среде сверхкритического диоксида углерода. Химические волокна, 2009, № 1, с. 39-44.

13.Н.П. Пророкова, Т.Ю. Кумеева, А.Е. Завадский, Л.Н. Никитин Модификация поверхности полиэтилентерефталатных тканей посредством нанесения гидрофобизирующего покрытия в среде сверхкритического диоксида углерода. Химические волокна, 2009, № 1, с. 26-30.

14. Горшенёв В.Н., Васильев В.Г., Коварский А.Л., Никитин Л.Н. Материалы с регулируемой пластичностью на основе низкомолекулярного кремнийорганического каучука. ЖПХ, 2009, т. 82, вып. 6, с. 1017-1022.

V. N. Gorshenev, V. G. Vasil'ev, A. L. Kovarskii, and L. N. Nikitin Materials with Controllable Plasticity Based on Low Molecular Weight Organosilicon Rubber. Russian Journal of Applied Chemistry, 2009, Vol. 82, No. 6, pp. 1074-1079.

15.Ю.Е. Вопилов, Л.Н. Никитин, А.Р. Хохлов, В.М. Бузник Сепарация низкомолекулярных фракций ультрадисперсного политетрафторэтилена в сверхкритическом диоксиде углерода. Сверхкритические флюиды. Теория и практика. 2009, т.4, № 2, с. 4-15.

16.А. А. Самойленко, Л. Н. Никитин, А. М. Лопатин, И. С. Ионова, Академик Ал. Ал. Берлин, академик А. Р. Хохлов Исследование полимеризации винилпирролидона в сверхкритическом диоксиде углерода с помощью ЯМР-спектроскопии. Доклады академии наук, 2009, том 428, № 5, с.624-627.

17.Е.С. Трофимчук, А.В. Ефимов, Л.Н. Никитин, Н.И. Никонорова, А.А. Долгова, Л.М. Ярышева, О.В. Аржакова, А.Л. Волынский, Н.Ф. Бакеев, А.Р.Хохлов Крейзинг полимеров в среде сверхкритического диоксида углерода. Доклады академии наук, 2009, том 428, № 4, с. 480-483.

18.L. N. Nikitin, A. Yu. Vasilkov, A. V. Naumkin, A. R. Khokhlov, V. M. Bouznik Metal-polymeric composites prepared by supercritical carbon dioxide treatment and metal-vapour synthesis. Journal of the Balkan Tribological Association, 2009, Vol. 15, No 2, 253-262.

19.A. Yu. Vasilkov, L. N. Nikitin, A. V. Naumkin, I. O. Volkov, M. I. Buzin, S. S. Abramchuk, Yu. N. Bubnov, E. M. Tolstopyatov, P. N. Grakovich, Yu. M. Pleskachevskii Gold and Silver-Containing Fibroporous Polytetrafluoroethylene Obtained under Laser Irradiation, Supercritical Carbon Dioxide Treatment, and Metal-Vapor Synthesis. Nanotechnologies in Russia, 2009, Vol. 4, Nos. 11–12, pp. 834–840.

А.Ю. Васильков, Л.Н. Никитин, А.В. Наумкин, И.О. Волков, М.И. Бузин, С.С. Абрамчук, Ю.Н. Бубнов, Е.М. Толстопятов, П.Н. Гракович, Ю.М. Плескачевский Золото- и серебросодержащий волокнисто-пористый политетрафторэтилен, полученный с использованием лазерного излучения, сверхкритического диоксида углерода и металло-парового синтеза. Российские нанотехнологии, 2009, т. 4, № 11-12, с. 128-132.

Публикации 2008-2010 гг.

20.I. A. Ronova, L. N. Nikitin, E. A. Sokolova, I. Sava, M. Bruma Study of the Behavior of Some Polyheteroarylenes Treated with Supercritical Carbon Dioxide. High Performance Polymers, 2009, v. 21, P. 562–578.

21.R. A. Dvorikova, L. N. Nikitin, Yu. V. Korshak, V. A. Shanditsev, A. L. Rusanov, S. S. Abramchuk, A. R. Khokhlov New Magnetic Nanomaterials of Hyperbranched Ferrocenecontaining Polyphenylenes Prepared in Liquid and Supercritical Carbon Dioxide. Journal of the Balkan Tribological Association, 2009, Vol. 15, No 3, 329–335.

22.Y. E. Vopilov, L. N. Nikitin, A. R. Khokhlov, V. M. Buznik Separation of Low Molecular Weight Fractions of Ultrafine Polytetrafluoroethylene with Supercritical Carbon Dioxide. Russian Journal of Physical Chemistry B, 2009, Vol. 3, No. 7, pp. 61–68.

23.L. N. Nikitin, M. O. Gallyamov, E. E. Said-Galiev, A. R. Khokhlov, V. M. Buznik Supercritical Carbon Dioxide: A Reactive Medium for Chemical Processes Involving Fluoropolymers. Russian Journal of General Chemistry, 2009, Vol. 79, No. 3, pp. 578–588.

24.I. A. Ronova, L. N. Nikitin, E. A. Sokolova, I. Bacosca, I. Sava, M. Bruma Swelling of Polyheteroarylenes in Supercritical Carbon Dioxide Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2009, **46**, 929–936.

25.Л.Н.Никитин, В.Н.Горшенев, В.Г.Васильев, С.С.Букалов Изменение пластичности кремнийорганических каучуков с помощью модифицирования их полипирролом. ЖПХ, 2010, Т. 83, Вып. 3., с. 479-483.

26.В. И. Соколов, Л. А. Булыгина, В. Н. Хрусталев, З. А. Старикова, Л. Н. Никитин, А. Р. Хохлов Сверхкритический диоксид углерода как растворитель для кристаллизации и реакционная среда для производных металлоценов. ДАН, 2010, том 431, № 1, с. 52-57.

27.V.I.Sokolov, L.N.Nikitin, L.A.Bulygina, V.N.Khrustalev, Z.A.Starikova, A.R.Khokhlov. Supercritical carbon dioxide in organometallic synthesis: Combination of *sc*-CO2 with Nafion film as a novel reagent in the synthesis of ethers from hydroxymethylmetallocenes. J. Organomet. Chem., 2010, v. 695, pp. 799-803. DOI: 10.1016/j.jorganchem.2009.12.017

28.Волынский А.Л., Бакеев Н.Ф., Ярышева Л.М., Никонорова Н.И., Аржакова О.В., Трофимчук Е.С., Долгова А.А., Семенова Е.В., Никитин Л.Н., Хохлов А.Р., Лопатин А.М., Ефимов А.В., Оленин А.В. «Способ получения нанопористых полимеров с открытыми порами» Патент РФ № 2382057 от 20.02.2010.

29.Н.П.Пророкова, Т.Ю.Кумеева, А.В.Хорев, В.М.Бузник, Л.Н.Никитин Обеспечение высокой степени гидрофобности полиэфирных текстильных материалов при обработке их с использованием сверхкритического диоксида углерода. Химические волокна, 2010, № 2, с. 31-35.

30.Р.А.Дворикова, Л.Н. Никитин, Ю.В. Коршак, М.И. Бузин, В.А. Шандицев, А.А.Корлюков, И.С.Бушмаринов, С.С. Абрамчук, А.Л. Русанов, А.Р. Хохлов

Ферроценсодержащие полифенилены как прекурсоры магнитных наноматериалов. Российские нанотехнологии, 2010, т. 5, № 9-10.

31.А. М. Лопатин, С. С. Букалов, Л. А. Лейтес, Ю. В. Коршак, Л. Н. Никитин, А. Р. Хохлов Синтез полианилина в среде сверхкритического диоксида углерода. Доклады академии наук, 2010, том 432, № 1, с. 55-59.

32.М.Л.Кештов, Е.И.Мальцев, А.М.Лопатин, Л.Н.Никитин, И.А.Благодатских, М.Н. Бузин, С.И.Позин, А.Р.Хохлов Новые электролюминесцентные фенилзамещенные полифлюорены, синтезированные в сверхкритическом диоксиде углерода ДАН, 2010 Т.432, №4, С.490-495.

Благодарности участникам работы: инэос ран

<u>ЛФХП</u>: Абрамчук С.С., Благодатских И.В., Вопилов Ю.Е., Галлямов М.О., Григорьев Т.Е., Казначеев А.В., Кештов М.Л., Кизас О.А., Лопатин А.М., Николаев А.Ю., Ронова И.А., Саид-Галиев Э.Е.; акад. Хохлов А.Р.; **ЛВМС:** Дворикова Р.А., проф.Русанов А.Л.; <u>ЛТ</u>: Васильков А.Ю.; **ЛСИП**: Наумкин А.В., Волков И.О.; <u>ЛМС</u>: проф. Лейтес Л.А., Букалов С.С.; **ЛСТЕМОС**: проф.Соколов В.И., Булыгина Л.А.; **ЛРСИ**: Хрусталев В.Н., Старикова З.А.; ЛФТОС: Курыкин М.А.; ЛФП: Бузин М.И., Васильев В.Г.; ГАБОС: акад. Бубнов Ю.Н. ФИЗ. ФАК. МГУ Галлямов М.О.; ХИМ. ФАК. МГУ акад. Бакеев Н.Ф., чл.-корр. Волынский А.Л., Ефимов А.В., Никонорова Н.И., Трофимчук Е.С. ИСПМ РАН чл.-корр. Музафаров А.М., проф. Серенко О.А. имет ран акад. Бузник В.М. ИХР РАН Кумеева Т.Ю., Пророкова Н.П. ИХФ РАН акад. Берлин Ал.Ал., проф. Самойленко А.А., ИБХФ РАН, Горшенев В.Н., проф. Коварский А.Л., <u>ИПХФ РАН</u> проф. Кирюхин Д.П. ИК РАН Волков В.В., Штыкова Э.В., Дембо К.А.; МГУДТ проф. Есина Г.Ф., Евсюкова Н.В., Никитская С.Н.