Laboratory of Theoretical Physics Amphiphilic Polymer Systems
Many
polymer systems possess specific properties due to the self-assembly of
macromolecules and surrounding molecules. Diverse types of macromolecules and
macromolecular structures are necessary for the applications in different
areas, such as coating, lithography, fuel cells, car
industry, construction materials, and medicine. Amphiphilic
molecules have got chemical groups of two types, which can differ markedly in
the interaction energy with surrounding molecules. A simple example of an amphiphilic molecule is a surfactant molecule composed of
hydrophobic (H) and polar (P) parts. At an interface of the oil-water type,
such molecules are concentrated and oriented that leads to the surface tension
decrease (Fig.1). This effect can be used, for example, for emulsion
stabilization.
Fig. 1 Fig. 2
Self-assembly
of macromolecules and their physical and chemical properties are also related
to hydrophobic and polar groups. In particular, the solubility of globular
proteins in water and their ability to collapse rapidly from an expanded (coil)
state are due to the specific distribution of hydrophobic and polar amino acid
residues along macromolecules that permit polar groups to be located mostly at
the globule surface (Fig. 2) [Dill, 1985].
For
the theoretical investigation of polymer systems, various methods of
statistical physics of macromolecules are used: the mean-field approaches for
systems with small fluctuations of component concentrations and scaling
approaches for polymer solutions. For example, a globular state of
macromolecules can be described in terms of the mean-field theory assuming that
the globule is large and its density is almost constant (Fig. 3).
Coil Globule
Expanded macromolecule Collapsed macromolecule
Fig.
3
The
main research field is the theoretical investigation of self-assembly in
polymer systems using the models of Van der Waals interactions of monomer units and imdividual
chemical groups. The research can be carried out in collaboration with the
laboratory of computer simulations of polymer systems (MSU) and laboratory of
computer simulations of complex polymer and biopolymer systems (INEOS
Supervisor Associate Professor, Dr. Elena N. Govorun E-mail: govorun@polly.phys.msu.ru r. 2-70, tel. 8(495)9394013 |
|
Topics
I. Self-assembly in polymer
systems in the presence of surfactants
II. Self-assembly of
macromolecules with composed (hydrophobic-polar) monomer units
III.
Hydrophobic-polar polymer
globules (a biomimetic approach)
IV.
Self-assembly in block copolymer
systems
V. Structure of charged dendrimers
VI. Diffusion and reaction
processes in polymer mixtures
Publications
1. E. N. Govorun and
D. E. Larin “Self-Assembly of Polymer Brushes in the
Presence of a Surfactant: A System of Strands” // Polymer Science, Ser. A, 2014, 56(6), pp. 770–780.
2. Govorun E.N., Ushakova A.S., Khokhlov A.R. “Microstructuring of a polymer globule in solution in the
presence of an amphiphilic substance” // Polymer Science, Ser. A, 2012, 54(5), pp. 414–425.
3. Govorun E.N., Ushakova A.S., Khokhlov A.R. “Microphase separation in polymer solutions containing
surfactants” // Eur. Phys. J. E, 2010, 032(3), pp. 229–242. DOI: 10.1140/epje/i2010-10639-6
4. Ushakova A.S., Govorun
E.N., Khokhlov A.R. “Macromolecules in a Blend of
Poor and Amphiphilic Solvents” // Polymer
Science, Ser. A, 2008, 50(8), pp. 854–864.
II.
Self-assembly of macromolecules with composed (hydrophobic-polar) monomer
units
1. Larin D. E., Lazutin A. A., Govorun E. N., Vasilevskaya V. V. “Self-Assembly
into Strands in Amphiphilic Polymer Brushes” // Langmuir, 2016, 32(27), pp. 7000-7008. DOI:
10.1021/acs.langmuir.6b01208 2. Lazutin À.À., Govorun E.N., Vasilevskaya
V.V., Khokhlov A.R. “New strategy to create
ultra-thin surface layer of grafted macromolecules” // J. Chem. Phys., 2015, 142(18),
p. 184904. DOI: 10.1063/1.4920973 |
|
3. Ushakova A.S., Govorun E.N., Khokhlov A.R. “Globules
of amphiphilic macromolecules” // J. Phys. Cond. Mat. 2006, 18(3), pp. 915-930.
”Conformation-dependent sequence design: evolutionary approach” // Eur. Phys. J. E, 2004, 13, pp.
15-25.
2. Govorun E.N., Khokhlov A.R., Semenov A.N. “Stability of dense hydrophobic-polar copolymer globules: Regular, random
and designed sequences” // Eur. Phys. J. E, 2003, 12(2),
pp. 255-264.
3. Govorun E.N., Ivanov V.A., Khokhlov A.R., Khalatur P.G., Borovinsky A.L.,
Grosberg A.Yu. “Primary
sequences of proteinlike copolymers: Levy-flight-type long-range correlations”
// Physical Review E, 2001, 64, R40903.
4. Khokhlov A.R., Grosberg A., Khalatur P.G., Ivanov V.A., Govorun E.N., Chertovich A.V., Lazutin A.A. “Conformation-dependent sequence design
of protein-like AB-copolymers” // In Protein Folding, Evolution and Design. Italian Physical Society. Proceedings of the International school of physics "Enrico Fermi". Course CXLV. Publisher IOS PRESS,
Amsterdam, 2001, 313-330.
1. Govorun E. N., Chertovich
A. V. “Microphase Separation in Random Multiblock Copolymers” // J. Chem. Phys.,
2017, 146(3), p. 034903. DOI: 10.1063/1.4921685
2. Govorun E.N., Gavrilov A.A., Chertovich A.V. “Multiblock copolymers prepared by patterned
modification: Analytical theory and computer simulations” // J. Chem. Phys, 2015, 142(20), p. 204903. DOI: 10.1063/1.4921685.
3. Erukhimovich I.Y., Belousov M.V.,
Govorun E.N., Abetz V.,
Tamm M.V. “Non-Centrosymmetric Lamellar Structures in
the Associating Blends of Tri- and Diblock
Copolymers” // Macromolecules, 2010, 43(7), pp. 3465-3478. http://pubs.acs.org/doi/abs/10.1021/ma9023735
4. Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D.,
Fischer H.R. ”Polymer Melt Intercalation in Clay Modified by Diblock Copolymers” // Macromol. Theory Simul., 2004, 13(5), p.
392-399.
5. Govorun E.N., Erukhimovich I.Y. “Emulsion stabilization by diblock copolymers: droplet curvature effect” // Langmuir, 1999, 15(24), pp.
8392-8398.
6. Govorun E.N., Litmanovich A.D. “Stabilization of a Disperse Homopolymer
Blend by Diblock Copolymers: the Effect of
Macromolecular Length” // Polymer
Science: Ser. A, 1999, 41(11), pp. 1111-1120.
7. Erukhimovich I.Y.,
Govorun E.N., Litmanovich A.D.
“Stabilization of polymer blend structure by diblock-copolymers”
// Macromol. Theory Simul.,
1998, 7(2), pp. 233-239.
E.N. Govorun, K.B. Zeldovich, A.R. Khokhlov “Structure of Charged Poly(propylene imine) Dendrimers: Theoretical
Investigation” // Macromol. Theory Simul., 2003, 12(9), p. 705.
DOI: 10.1002/mats.200350030
1. Govorun
E.N., Kudryavtsev Y.V. "Phase separation in a
polymer blend in the course of interchain exchange
reaction" // Polymer Science: Ser A,
2004, 46(5), pp. 553-564.
2. Krentsel L.B., Makarova V.V., Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D.,
Markova G.D., Vasnev V.A., Kulichikhin V.G.
"Interchain exchange and interdiffusion
in blends of poly(ethylene terephthalate) and
poly(ethylene naphthalate)” // Polymer Science,
Ser. A, 2009, 51(11-12), pp. 1241-1248.
3. Chertovich A.V., Guseva D.V., Govorun E.N., Kudryavtsev Y.V., Litmanovich
A.D. "Monte Carlo Simulation of the Polymer-Analogous Reaction in Polymer
Blend" // Polymer Science, Ser. A, 2009, 51(8), pp. 957-964.
4. Kudryavtsev Y.V., Govorun E.N. ”Diffusion-induced growth of compositional heterogeneity
in polymer blends containing random copolymers” // Eur. Phys. J. E, 2006, 21(3),
pp. 263-276. DOI
10.1140/epje/i2006-10067-3
5. Litmanovich A.D.,
Plate N.A., Kudryavtsev Ya.V.,
Govorun E.N. "Macromolecular Reaction in Polymer
Blends: Interchain Effects" // Comptes rendus Chimie, Academie des Sciences,
Paris 2006, 9(11-12), 1345-1350.
6. Kudryavtsev Y.V., Govorun E.N. "End-group interchain
exchange reaction in polymer blends: evolution of the block weight
distribution" // e-Polymers,
2003, no. 063.
7. Kudryavtsev
Y.V., Govorun E.N. "Direct interchain
exchange reaction in a polymer blend: evolution of the block weight
distribution" // e-Polymers,
2002, no. 033.
8. Plate N.A., Litmanovich
A.D., Kudryavtsev Y.V., Govorun
E.N. "Interplay of chemical and physical factors in reacting polymer
blends. Theoretical considerations" // Macromol. Symp., 2003, 191, pp. 11-20.
9. Kudryavtsev Y.V., Govorun E.N., Litmanovich A.D. “A
New Approach to the Description of a Polymer-Analogous Reaction and Interdiffusion in a Blend of Compartible
Polymers” // Polymer Science: Ser. A.,
2001, 43(11), pp. 1085-1089.
10. Kudryavtsev Y.V.,
Govorun E.N., Litmanovich
A.D. “Phase Separation in Polymer Blends: Growth of a Single Particle” // Polymer Science: Ser. A, 2000, 42(4),
pp. 412-416.
11. Platé N.A.,
Litmanovich A.D., Yashin V.V.,
Kudryavtsev Y.V., Govorun E.N.
"Modern problems of the theory of macromolecular reactions in polymer blends"
// Macromol. Symp., 1997, 118,
pp. 347-362.
12. Yashin V., Kudryavtsev Y., Govorun E., Litmanovich A. "Macromolecular reaction and interdiffusion in compatible polymer blend"
// Macromol. Theory
Simul., 1997, 6(1), pp.
247-269.