Закономерности смачивания подложек, краевой угол

Эволюция испаряющейся капли: два основных сценария

сценарий І

сценарий II

Основные сценарии изменения геометрии капли при высыхании

- Сценарий I
 - Область контактной площадки уменьшается по мере высыхания капли, краевой угол флуктуирует около значения θ_{отступающий}
- Сценарий II
 - Область контактной площадки не изменяется, при этом краевой угол уменьшается по мере высыхания капли
- Сценарий III
 - Область контактной площадки увеличивается по мере растекания капли по подложке

Капля как шаровой сегмент

 $r^2 \ll \lambda^2 = \sigma / \rho g$

Испарение капли, V(t)

Сценарий I

Сценарий II

 $\tau = (2 + \cos\theta) \frac{\rho h_0}{2J}$

$$\tau = \frac{\rho h_0}{2J}$$

$$V(t) = \frac{\pi}{3} \left(\frac{2 + \cos \theta}{1 - \cos \theta} \right) \times \qquad V(t) = \frac{\pi h_0}{6} \left(1 - \frac{t}{\tau} \right) \times h_0^3 \left(1 - \frac{t}{\tau} \right)^3 \qquad \left(3s_0^2 + h_0^2 \left(1 - \frac{t}{\tau} \right)^2 \right)$$

Эволюция объема испаряющейся капли

Уменьшение объема капли за счет испарения через свободную поверхность

 Δ nnokciamating manoro

- Определение потока J в текущих условиях с использованием несорбирующих подложек
- Разделение вкладов сорбции и испарения в динамику уменьшения объема капли

$$V(t_i) = V(t_{i-1}) - \frac{J}{\rho} S'(t_{i-1}) \Delta t$$

Испарение капли, $S_{KOH}(t)$, $\theta(t)$

Сценарий І

Сценарий II

 $\theta = \theta_0 = const$ $s = s_0 = const$

 $S_{\text{KOH}}(t) = \pi (s(t))^2 =$ $= \pi h_0^2 \left(\text{ctg} \frac{\theta_0}{2} \right)^2 \times \left(1 - \frac{t}{\tau} \right)^2$

$$\theta(t) = 2 \arctan\left(\tan\frac{\theta_0}{2} \times \left(1 - \frac{t}{\tau}\right)\right)$$

Эволюция S_{кон} и в испаряющейся капли

Результаты сравнительных исследований смачиваемости

- Зависимости от времени значений краевого угла, области контактной площадки, объема капли – по мере ее испарения. Переход к нормированному времени и усреднение!
- Определение сценария изменения геометрии капли (I, II, III)
- Выделения вклада сорбции в динамику уменьшения объема в случае сорбирующей подложки

капли воды в разные моменты времени:

0 мин

17 мин

размер кадра 4.4×3.5 мм

поверхности: а) высокоориентированного пиролитического графита, b) наноструктурированного углеродного материала

0 мин

8 мин

17 мин

поверхности: c) пленки из нанотрубок; d) ГДС Toray; e) ПТФЭ

C)

d)

e)

капли фосфорной кислоты в разные моменты времени:

капли фосфорной кислоты в разные моменты времени:

поверхность: d) ГДС Toray; e) ПТФЭ

Смачиваемость полимерных и углеродных материалов жидкими электролитами (краевой угол *θ*)

	H ₂ O	H ₃ PO ₄
пирографит	58°	37 °
наноуглерод	153°	13°
нанотрубки (пленка)	112°	55 °
ГДС (Toray)	120°	90 °
Тефлон (ПТФЭ)	95°	100°
Нафион (сух., с вод.)	<mark>83</mark> °	
ПБИ-О-ФТ (недп., доп.)		17° / 32°
ПБИ-О-ФТ (фобиз.)		<mark>81</mark> °
БПБИ (доп.)		16 °
БПБО (доп.)		20°

Гидрофобизаторы, их влияние на смачиваемость подложек

Гидрофобизатор: Teflon AF 2400

Teflon AF

- аморфный
- гидрофобный
- m : n = 13 : 87
- М_w ~ 300 кДа
- $T_g \sim 240 \ ^{\circ}C$
- ρ = 1.7 г/см³

Некоторые полезные свойства:

 • большой свободный объем ⇒ хорошая газопроницаемость

• оптически прозрачен в широком спектральном диапазоне (от ИК до УФ)

 низкие значения показателя преломления и диэлектрической проницаемости (вплоть до ГГц диапазона),

• химически стабилен к действию большинства растворителей и агрессивных сред

- термически стабилен (до 300 °C)
- растворим во фтор-растворителях и СК СО2 (!)

Растворимость Teflon AF в CK CO₂

Пленки Teflon AF 2400 на пирографите

Нанометровая толщина: 4-8 нм • Низкая шероховатость: 0.4-0.6 нм (площади 0.5×0.5 мкм²) Высокая однородность и стабильность

(ВОПГ подложка)

Gallyamov et al. // Langmuir 2002, 18, 6928

Гидрофобизатор: УПТФЭ «Форум» *

 Продукт термогазодинамической деструкции отходов промышленного политетрафторэтилена (фторопласт-4)

 производство Института Химии ДВО РАН (Владивосток)

ИК и ЯМР спектроскопический анализ

(**Л. Н. Игнатьева и др. //** Ж. Структ. Хим., **2002**, *43(1)*, 69–73)

- низкомолекулярные и олигомерные звенья,
 <N> < 100
- Содержит концевые -CF₂-CF₃, CF=CF₂, -CF₂-CFO
 группы

УПТФЭ «Форум», анализ ДРС

 Частицы диаметром <D> ~ 500 нм (анализ дисперсий методом динамического рассеяния света после обработки ультразвуком, установка ALV, Германия, с = 1 мг/мл)

УПТФЭ «Форум», результаты микроскопии

- Вверху изображение оптической микроскопии ("Axioplan 2 Imaging", Carl Zeiss, Германия)
 - Внизу изображение электронной микроскопии (СЭМ DSM 962, Carl Zeiss, Германия)
 - Нанесение на вращающуюся кремниевую подложку из дисперсии в гексане, с = 1 мг/мл
 Размер черты: 20 мкм, Диаметр репера: 1 мкм

Получение композитных микрочастиц

Композитные микрочастицы «ядро-оболочка»

Механизм стабилизации: эмульсификация Пикеринга

Pickering // J. Chem. Soc. 1907, 91, 2001

Дополнительный возможный механизм

Морфология тонких пленок УПТФЭ: данные ССМ

Подложки: а) пирографита (ВОПГ)

б) слюды

Галлямов *и др. // Хим. физ.* **2004**, *23(6)*, 76-80

Стабильность тонких прослоек

$$\Pi(H) = -\frac{\hbar}{8\pi^2 H^3} \int_0^\infty \frac{(\varepsilon_1(\xi) - \varepsilon_3(\xi))(\varepsilon_2(\xi) - \varepsilon_3(\xi))}{(\varepsilon_1(\xi) + \varepsilon_3(\xi))(\varepsilon_2(\xi) + \varepsilon_3(\xi))} d\xi$$

$$\text{if } \varepsilon_1(\xi) > \varepsilon_3(\xi) > \varepsilon_2(\xi) \\ \Rightarrow \frac{\partial \Pi(H)}{\partial H} < 0$$

материал	n	3
подложка	1.4-1.5	2-2.5
пленка	1.35-1.38	2-2.1
CK CO ₂	1.2	1.5

Deryagin et al. "Surface Forces", New York: Consultants Bureau, 1987

Инкапсуляция дотриаконтана

Галлямов // Наука перв. рук 2012, 48, 128

Смачивание гладких подложек

ΠΤΦЭ

Смачивание гладких подложек

Гидрофобизованная бумага

Исходная (офисная, Canon)

гидрофобизованная УПТФЭ

Гидрофобизованная бумага

Углеродная ткань

исходная (SAATI, S-CCG5)

гидрофобизованная AF2400

Gallyamov et al. // Colloid J. 2007, 69, 411

Углеродная ткань: смачивание водой

Gallyamov et al. // Colloid J. 2007, 69, 411

Влияние гидрофобизации на транспорт паров воды

Gallyamov et al. // Colloid J. 2007, 69, 411
Нанографит: смачивание водой

наноструктурированный углеродный материал исходный УПТФЭ

Gallyamov et al. // Colloid J. 2007, 69, 411

Нанографит: смачивание водой

Gallyamov et al. // Colloid J. 2007, 69, 411

Сорбция воды нанографитовой подложкой

Gallyamov et al. // Colloid J. 2007, 69, 411

Нанографит: смачивание Н₃РО₄

Наноструктурированный углеродный материал исходный УПТФЭ

Нанографит: смачивание H₃PO₄

Результаты гидрофобизации

Подложка	Краевой угол, град		Площадь контактной площадки, см ²		Проникновение	2d - 20
	сразу после нанесения капли	при 50%-ном уменьшении объема капли	сразу после нанесения капли	при 50%-ном уменьшении объема капли	структуру подложки	Сценарий
Бумага	84	50	0.075	0.075	есть	Π
Бумага с покрытием УПТФЭ	150	141	0.0095	0.0098	нет	п
Наноструктуриро- ванная графитовая подложка	153	143	0.015	0.015	есть	п
Наноструктуриро- ванная графитовая подложка с покрыти- ем УПТФЭ	158	154	0.009	0.007	нет	I
Слюда	0	-			-	
Слюда с покрытием из октакозана	150	142	0.0088	0.0083	нет	Ι, Π
Углеродная ткань	119	50	0.032	0.065	есть	11
Углеродная ткань с покрытием из Teflon AF2400	133	116	0.022	0.024	нет	П

Галлямов и др. // Коллоид. ж. 2007, 69(4), 448-462

Октакозан на слюде

Октакозановое покрытие на атомарно-гладкой слюде, нанесенное экспозицией в растворе в СК СО₂ методом RESS

Октакозан на слюде

Композит $C_{32}H_{66}$ + УПТФЭ

Гидрофобизация газодиффузионных слоев электродов топливных Элементов

Общая схема МЭБ топливного элемента

ЭДС элемента определяется изменением свободной энергии в химической реакции окисления водорода 1.23 В при 20° С для H₂/O₂.

Электроды ТЭ: ГДС + АС

Углеродная ткань + напыленная дисперсия частиц PTFE и Pt @ C

ПТФЭ как гидрофобизатор

Улучшение электродов: гидрофобизация ГДС осаждением полимеров из СК СО₂

Покрытие на шероховатой подложке

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Kolomytkin et al. // Polym. Sci. A 2017, 59, 42

Покрытие на шероховатой подложке

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Kolomytkin et al. // Polym. Sci. A 2017, 59, 42

Покрытие на шероховатой подложке

Ha углеродн. ткани Saati SCCG-5N / = 370 µm

Хроноамперометрия

Фотография измерительной ячейки с нитью в солевом растворе и эквивалентная схема, R_m и C_m -электрическое сопротивление и емкость нити; R_a -- сопротивление, вносимое измерительной системой

> Изменения тока через ячейку во времени при переключении напряжения для (а, г) углеродной нити, покрытой Тефлон АФ 2400, (б, д) исходной углеродной нити, (в, г) командные напряжения

где *L* -- длина погруженной части нити, *I*₀ -- начальный ток, Δ*V* -- амплитуда ступеньки напряжения

Kolomytkin et al. // Polym. Sci. A 2017, 59, 42

Рентгеновская фотоэлектронная

спектроскопия

Обзорные РФЭС спектры исследованных образцов

Kolomytkin et al. // Polym. Sci. A 2017, 59, 42

РФЭС спектры C1s-электронов исследованных образцов

Kolomytkin *et al.* // *Polym. Sci. A* **2017**, *59*, 42

Результаты СЭМ и РФЭС

0,2

Kolomytkin et al. // Polym. Sci. A 2017, 59, 42

Покрытие на поверхности: измерения проводимости через границу раздела (амперометрия) и данные РФЭС

Загрузка Тефлон АФ, %	Емкость поверхности нити мкФ/м	Средняя толщина пленки, нм	Проводи- мость интер- фейса нити, мкСм/м	Доля покрытой площади, %, амперо- метрия	Доля покрытой площади, %, РФЭС
0	800	-	1000	-	-
0,2	400	80	600	50	60
1	200	200	300	80	80
2	3	400	15	99	98

- Для (почти) сплошного покрытия углеродной ткани достаточно загрузки в 2% фторполимера Teflon AF
- Результаты СЭМ, РФЭС и потенциостатической амперометрии дают согласованные результаты

Испарение капли воды на ткани, гидрофобизованной, Saati SCCG-5N

исходный объем 10 мкл

"Искусство науки – 2010": II место в номинации Высокие технологии

Капля воды на сверхгидрофобной поверхности углеродной ткани, волокна которой покрыты тонким слоем (~десятки нм) полимера гидрофобизатора. Осаждение пленки производилось из раствора сополимера в сверхкритическом диоксиде углерода. Одно из перспективных применений нового материала создание электродов топливных элементов со значительно большим ресурсом работы.

Гидрофобизация пористых сред, развитых поверхностей и т.п.

Эффект листа лотоса, сверхгидрофобность

Эффект лотоса

Структура листа лотоса

Barthlott and Neinhuis // Planta 1997, 202, 1-8

Механизм возникновения сверхгидрофобности

Венцель:

$$\cos\tilde{\theta} = r\cos\theta$$

Кассье и Бакстер:

$$\cos\widetilde{\theta} = -1 + \phi_s (1 + \cos\theta)$$

Взаимосвязь углов смачивания шероховатой и гладкой поверхностей: либо через фактор шероховатости *r*, либо через долю поверхности, контактирующей с каплей смачивающей жидкости

Возможные типы эволюции краевого угла для испаряющейся капли

Ресурсные испытания: долговременная экспозиция в воде, фосфорной кислоте, реагенте Фентона

Образец сравнения (контроль): стандартная гидрофобизация с использованием дисперсии Teflon 30N и последующим отжигом

Образцы, гидрофобизованные в растворах Teflon AF в CK CO₂, с отжигом или без

углеродная ткань

дисперсия Teflon 30N

исходная ткань гидро-

фобизованая

Проблема смачивания (решается предварительным смачиванием этанолом)

Эволюция капель до ресурсных испытаний

испарение \rightarrow

Kolomytkin et al. // Russ. J. Phys. Chem. B 2011, 5, 1106

Эволюция капель после ресурсных испытаний

испарение \rightarrow

Kolomytkin et al. // Russ. J. Phys. Chem. B 2011, 5, 1106

Динамика краевого угла с водой до и после ресурсных испытаний

Механическая стабильность

детектирована высокая стойкость покрытия Teflon AF 2400 (в сравнении со стандартным) после цикла механической стирки в присутствии детергента

Kolomytkin et al. // Russ. J. Phys. Chem. B 2011, 5, 1106