Пространственно регулярное осаждение на подложку

Наноструктурирование: самоорганизация частиц катализатора со фторполимерным окружением при осаждении из СК СО₂

проблема: низкая доступность частиц катализатора для газовых реагентов в ТЭ; решение: стабилизация частиц катализатора в самоорганизованных мицеллах фторированного блоксополимера (фторполимеры проницаемы для О₂)

100 nm

ОТЖИГ

Новые каталитические материалы для ТЭ и т.п.

Молекулярная упаковка дендримеров

Фторуглеводородные (по поверхности) дендримеры (группа акад. А.М. Музафарова), осаждение из ск СО₂, масштабная линия 50 нм, шкала высот 10 нм Шумилкина и др. // Высокомолек. соед. А **2006**, *4*8, 2102

Самоорганизация F_nH_m молекул

Образцы предоставлены группой проф. дра М. Мёллера (DWI RWTH Aachen, Германия)

Mourran et al. // Langmuir 2005, 21, 2308

Самоорганизация F_nH_m молекул

Gallyamov *et al.* // Phys. Chem. Chem. Phys., **2006**, *8*, 2642

F₁₄H₁₈, слюда (a, b), графит (c,d), осаждение из раствора в сверхкритическом CO₂, масштабная линия: 150 нм, шкала высот: 10 нм (a), 20 нм (c)

Самоорганизация F_nH_m молекул: принцип плотной упаковки

 $D = \frac{4l_{\rm H}}{1 - \frac{S_{\rm H}}{S_{\rm F}}}$

где $I_{\rm H}$ – длина углеводородного блока (определяется числом атомов H), $S_{\rm H}, S_{\rm F}$ – площади сечения углеводородного и фторуглеродного блоков, соответственно

Gallyamov et al. // Phys. Chem. Chem. Phys. 2006, 8, 2642

Согласие с литературными данными

диаметр тороида, нм

Самоорганизация XF_nH_mYблоксополимеров

Приготовлены в группе прив.-доц., д-ра, Doris Pospiech (Leibniz-Institut für Polymerforschung Dresden e.V.), предоставлены в рамках совместных работ с прив.-доц., д-ром, Царьковой Л.А. (DWI RWTH Aachen e.V.)

PMMA/PsfMA (mol) : 73 / 27, $M_{\rm p} = 26\ 200, M_{\rm w} = 28\ 900$

Kolomytkin et al. // Eur. Polym. J. 2015, 71, 73

Результаты ССМ: самоорганизация ХF_nH_mY-блоксополимеров

Медленная декомпрессия

Мицеллы XF_nH_m , Y на слюде, осаждение из растворов в СК СО₂, Размер кадра : 4 × 4 мкм² (a, b), 2 × 2 мкм² (c, d), черта: 500 нм, высоты: 250 нм

> Kolomytkin *et al. // Eur. Polym. J.* **2015**, 71, 73

ПЭМ: XF_nH_mY-блоксополимеры

Мицеллы, нагруженные Pt, как материал для АС

ŵ,

File: SG-4.008 brt.spm Image data: Height

Темплатирование подложек мицеллами с прекурсором

Инкапсуляция металла в мицеллы при постепенном восстановлении прекурсора

Темплатирование подложек мицеллами с прекурсором

Kolomytkin et al. // Eur. Polym. J. 2015, 71, 73

Результаты осаждения наночастиц Pt и БСП мицелл

- Была подтверждена концепция инкапсуляции наночастиц Pt в БСП мицеллах из раствора металлорганического прекурсора в СК СО₂ в одном сосуде в одну стадию
- Распределения размеров кластеров и межкластерного расстояния имеют выраженные пики, коррелирующие с размером мицелл
 Коlomytkin *et al. // Eur. Polym. J.* 2015, 71, 73

Безподложечный синтез электрокатализаторов

Рост дисперсных частиц в СК СО2

Для индуцирования конверсии/декомпозиции прекурсора: 1. Некоторый газообразный активный агент (водород, кислород) может быть подмешан к СК СО₂ 2. Температура может быть повышена 3. Комбинация 1 и 2

Плотность СК флюида и/или интенсивность перемешивания как инструменты контроля размера/морфологии частиц

Использование прекурсора, растворимого в СК СО2

Использование прекурсора, растворимого в СК СО2

Людвиг Монд «дал металлам крылья»

<u>Карбонилы металлов</u>:

летучие, легко сублимируемые соединения, хорошо растворяющиеся в СК CO_2 . В работе использовали $W(CO)_6$, CpMn(CO)₃, Mn₂(CO)₁₀, ...

Фазовая диаграмма карбонилов металлов в СК СО₂

Разложение W(CO)₆ в CK CO₂ + O₂ (150 °C, 400 атм + 15 атм)

ПЭМ

а) синтез в О₂

с) синтез в СК СО₂ + О₂ + отжиг, 850 °С

b) синтез в СК СО₂ + О₂

d) синтез
в СК СО₂
+ О₂
+ экспозиция
при РЦ
в электролите

Распределение по размерам

РДА: фазовый состав

а) синтез в О₂, фазы: W₁₈O₄₉, орторомбическая WO₃, моноклинная WO₃, WO₂, W, ...

> sc CO₂ 150 C

> > WO_{x} + x CO_{2} + (6-x) CO_{2}

b) синтез в СК CO₂ + O₂, отжиг при 850 °C, фазы: моноклинная WO₃, ...

с) синтез в СК $CO_2 + O_2$, фазы: нанокристаллическая WO_3 (орторомб. и моноклин.), + аморфные WO_x

в гидратированные оксовольфраматы

Осаждение Pt на полученные дисперсные частицы WO_x

Микрографии СЭМ частиц Pt, полученных из: СОD-прекурсора (слева) и hfacac-прекурсора (справа)

Осаждение Pt на полученные дисперсные частицы WO_x

Распределение частиц Pt@WO_x по размерам

Данные дифракции электронов

ПЭМ анализ частиц Pt, полученных из: СОД-прекурсора (вверху) и hfacac-прекурсора (внизу). Слева – картины дифракции электронов (указаны индексы плоскостей для рефлексов на Pt), справа – участки от которых они получены

Данные дифракции электронов

Электроосаждение Pt в электролите на основе СК CO₂ 16 мМ ТБАТФБ, 2,3 М ацетонитрила в СК СО₂, 14,4 мМ прекурсора платины, 80 °C, 530 атм, - 3.5 B. СЭМ микрографии (а, с) и распределения по размерам (b, d) частиц осадков на ВОПГ; время осаждения 2 ч (a, b), 10 ч (c, d и далее). АСМ изображения в режиме измерения топографии (e, g) и сдвига фаз (f, h). Шкала высот 300 нм (е, д). Масштабная линия 400 нм (a, c, e–h). Ursov et al. //

Dokl. Phys. Chem. **2019**, 489, 173

Расщепление графита в электролите на основе СК СО₂

Интеркаляция [BF4]⁻, 18 мМ ТБАТФБ, 2.1 М АСN в СК СО₂, реактор 13 мл, 40 °C, 480 атм, 10 В

образец ВОПГ до и после интеркаляции

Nikiforov et al. // Dokl. Phys. Chem. 2020, 492, 69

РФЭС интеркалированного графита

обзорный

Nikiforov et al. // Dokl. Phys. Chem. 2020, 492, 69

Трехэлектродная ячейка

a) фото b) сечение: рабочий электрод (1), газовый порт (2), электрод сравнения (3), противоэлектрод (4), ВОПГ (5), Окольцо (6) Nikiforov *et al.* // J. Supercritical Fluids **2022**, 187, 105627

Чешуйки графеноподобного материала

Nikiforov et al. // J. Supercritical Fluids 2022, 187, 105627

Синтез MnO_x в СК CO_2 + O_2

Морфология / структура

смесь MnO₂ (пиролюзит), MnO₂ (ахтенскит), Mn₂O₃ (биксбиит-с), Mn₃O₄ (гаусманит), данные РДА

Воспроизводимость / свойства

Другой прекурсор

100 nm

20 µm

средний
 размер – 20 нм

мелкие
 кристалли ческие частицы

средний
 размер – 20 нм

 мелкие нанокристаллические (квазиаморфные) частицы

ПЭМ: морфология частиц MnO_x

синтез в СК СО₂ + О₂ при 220 °С, 450 атм Zefirov et al. // J. Mater. Sci. 2018, 53, 9449

Распределение по размерам

Zefirov et al. // J. Mater. Sci. 2018, 53, 9449

СЭМ: морфология частиц MnO_x

СИНТЕЗ В СК СО₂ + О₂ при 220 °С, 450 атм Zefirov et al. // J. Mater. Sci. 2018, 53, 9449

(2x)

РДА: фазовый состав

Zefirov et al. // J. Mater. Sci. 2018, 53, 9449

Электрохимическая активность (восстановление кислорода)

