Создание пористости в полимерных мембранах как резервуара для электролита

Ионный транспорт в пористых мембранах для проточных батарей

Длина траектории для пористой мембраны, І:

$$l = h \times \sqrt[3]{1 + \frac{n^3 a^3}{h^3} - na < h}$$

где *h* – толщина изначально гомогенной мембраны, *a* – характерный латеральный размер пор, *n* – число пор на единицу длины *h*

Gallyamov et al. // Polym. Sci. A 2018, 60, 507

ПБИ мембраны для проточных батарей с водным электролитом

БИ-О-ФТ

- Поликатионы в протонированной форме, низкая проницаемость по катионам ванадия
- Стабильны в водных растворах VO₂⁺ + H₂SO₄
- Существенно дешевле Нафиона
- Основной недостаток низкая протонная проводимость: 10 мСм/см

Получение пористых ПБИ мембран путем индуцированного СК СО₂ фазового разделения

Объемное набухание АБПБИ в ДМА при 80 °С

Морфология, СЭМ

N,N-ди support sup

N,N-диметилацетамид, сколы (жидкий азот), средний размер пор ~ 2,7 мкм

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Ионный транспорт

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Зарядные и разрядные кривые ячеек 1,6 1,4 1,2 Voltage, V scABPBI Nafion 0 1,0 8 ര 0 0,8 O 0 при *j* = 40 мА/см² 0 0,6 20 40 60 80 100 0 Relative capacity, %

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Sizov et al. // J. Supercritical Fluids 2018, 137, 111

Преднабухание в различных растворителях, замена на СК СО₂

N,N-диметилформамид

N,N-диметилацетамид

N-метил-2-пирролидон

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Протонная проводимость и проницаемость мембран

мембрана	протонная проводимость (2.5 M H ₂ SO ₄), σ _{SA} , мСм/см	протонная проводимость (1 M VOSO ₄ + 2.5 M H ₂ SO ₄), σ_{VS} , мСм/см	проницае- мость, ванадил-ион, Р, см²/мин
АБПБИ- исходный	7	5	1,7 × 10 ⁻⁹
АБПБИ-ДМФА	14	11	1,6 × 10 ⁻⁸
АБПБИ-ДМА	20	15	3,2 × 10 ⁻⁸
АБПБИ-ММП	27	19	4,0 × 10 ⁻⁸
нафион 115	79	63	3,7 × 10 ⁻⁶

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Зарядные и разрядные кривые ячеек

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Ресурсные испытания

N-метил-2-пирролидон

Sizov et al. // J. Appl. Polym. Sci. 2018, 135, 46262

Проблемы утилизации пластика

Мотивация: накопленные отходы

Термодеструкция полиолефинов Состояние исследований

Некаталитический (термический) пиролиз

- температуры выше 500 °C
- продукты смесь сложного состава

Каталитический пиролиз

- температуры меньше: 100-200 °C
- выше чистота выхода продуктов
- подходящие катализаторы цеолиты, оксиды металлов

Термодеструкция полиолефинов Состояние исследований

Бескислородная атмосфера

• большинство экспериментальных работ

Кислородсодержащая атмосфера

- давление кислорода влияет на распределение продуктов
- типичными продуктами являются ацетон и уксусная кислота
- конкретное распределение продуктов варьируется от исследования к исследованию

Термодеструкция полиолефинов Состояние исследований

Химическая переработка в СК средах

- главным образом: СК вода и спирты
- предложены разные механизмы для различных типов пластика [Goto // J. Supercrit. Fluids. 2009, 47, 500]

Химическая переработка в СК СО₂

- как сорастворитель в каталитическом гидролизе ПЭТФ
 [Li et al. // AIChE J. 2015, 61, 200]
- очистка восков, как продуктов переработки полиолефинов [Azimi *et al.* // Waste Manag. 2019, 97, 131

Термодеструкция полиолефинов Перспективность исследований

Химическая переработка в сверхкритическом диоксиде углерода

пластификация матрицы

✓ растворение низкомолекулярных продуктов

🗸 хорошо развитые технологии экстракции

перерабатываемый растворитель

Термодеструкция полиолефинов в СК СО₂

Термодеструкция полиолефинов в СК СО2

135 °С, 280 атм

Термодеструкция ПП в СК СО₂

О ₂ :ПП, г/г	O ₂ , Mn ₂ O ₃	CK CO ₂ , O ₂ , Mn ₂ O ₃	O ₂	CK CO ₂ , O ₂
1,5				
3,0				

135 °С, 280 атм

Термодеструкция ПП в СК СО2

Elmanovich et al. // J. Supercrit. Fluids, 2020, 158, 104744

Термодеструкция ПП в СК СО2

Газовая хроматография/масс-спектрометрия

	O ₂ :	Уксусная	Муравьиная	Пропионовая	Ацетон, %
	ПП, г/г	кислота, %	кислота, %	кислота, %	_
	Mn ₂ O ₃	ОН	НОН	ОН	
O ₂	1.5	82	8	2	8
$CK CO_2, O_2$	+	87	6	2	5
O ₂	3	97	_	3	—
CK CO ₂ , O ₂	+	86	_	14	_
O ₂	1.5	68	14	6	12
CK CO ₂ , O ₂	-	34	28	10	28
O ₂	3	64	13	7	6
$CK CO_2, O_2$	-	62	18	5	15

Термодеструкция ПП в СК СО₂ ¹Н ЯМР

Разные отношения О2:ПП

Термодеструкция ПЭ в O_2 и смеси O_2 + СК CO_2

14 атм О₂, 215 атм О₂ + СК СО₂

140 °С, 24 ч

O ₂ :PE	1:1 wt	1:1 wt	3:1 wt	3:1 wt
CK CO ₂	-	+	-	+
Mw, г/моль	2400-18000	450-2400	170-620	140-1250
уксусная /муравьи	1/0.9/<0.1* 1/0.5/0.2**	1/0.7/0.1* 1/0.4/0.2**	1/0.6/0.1* 1/0.3/0.1**	1/0.8/0.1* 1/0.5/0.5**
ионовая	*ЯМР, **Г)	K-MC		

обрамасса масса плотность среда полное СО₂, г/мл разложения зец поликислодавление при 150 °C мера, мг рода, мг H_2O ΠΠ 0 60 0 0 4.7 ΠΠ 1 $H_2O_2^{aq}(30\%)$ 14 60 200 0 $H_2O_2^{aq}+CO_2$ ΠΠ 2 0.51 60 200 330 H_2O+O_2 ПП 3 60 200 0 14 $H_{2}O+O_{2}+CO_{2}$ $\Pi\Pi$ 4 60 200 0.51 330

Термодеструкция полипропилена в водных средах с кислородом PP 1 **PP_0 PP 2** H₂O H_2O_2 $H_2O_2 + CO_2$ 1 CM PP_3 **PP** 4 H₂O+O₂ $H_2O+O_2+CO_2$

среда разложения	уксусная кислота, моль %		муравьиная кислота, моль %		пропионовая кислота, моль %	
	¹ Н ЯМР	ΓX-MC	¹ Н ЯМР	ΓX-MC	¹ Н ЯМР	ΓX-MC
$H_2O_2^{aq}(30\%)$	96	71	3	26	1	3
$H_2O_2^{aq}+CO_2$	69	70	28	21	3	9
H_2O+O_2	81	74	17	19	2	7
$H_2O+O_2+CO_2$	60	73	37	21	3	6

среда разложения	молярная концентрация кислот, моль/л	расчетное полное содержание кислот, мг
$H_2O_2^{aq}(30\%)$	0.6	30
$H_2O_2^{aq}+CO_2$	1.0	60
H_2O+O_2	1.1	80
$H_2O+O_2+CO_2$	0.9	60

моделирование деструкции ПП мусора

Бифазные системы с диоксидом углерода под давлением

Бифазные системы H₂O + CO₂ под давлением

♦ Абсолютная биосовместимость

Присутствие угольной кислоты в водной фазе такой системы позволяет растворять в ней некоторые полимеры, приобретающие свойства поликатионов в кислых средах

Бифазные системы $H_2O + CO_2 под$ давлением $H_2O + CO_2 rod$ $H_2O + CO_2 \Leftrightarrow H_2CO_3 H_2CO_3^* \Leftrightarrow H^+ + HCO_3^-$

Diamond et al. // Fluid Phase Equilibria 2003, 208, 265

Table IV. Measured pH Values of the Water-CO₂ System at Different Process Temperatures

Meyssami et al. // Biotechnol. Prog. 1992, 8, 149

Бифазные системы H₂O + CO₂ под давлением

Хитозан: растворимый поликатион в кислых водных средах (угольная кислота)

 Композиции из хитозана, приготовленные в присутствии угольной кислоты, перспективны для биомедицинских приложений

Протезы клапанов сердца центр

Центр сердечно-сосудистой хирургии имени А.Н. Бакулева РАМН

- Механические протезы
 - + Прочность
 - + Долговечность
 - Пожизненная антикоагулянтная терапия
 - Влияние на трансклапанный поток крови
 - Тромбоз, образование фистул, нарастание паннуса, сужение просвета, эндокардит,...

- Протезы из биологических тканей (биопротезы)
 - Не требуется антикоагулянтная терапия
 - + По гемодинамическим характеристикам близки нативным
 - Развитие тканевой дегенерации
 - Кальцификация
 - Срок службы 10–12 лет

ИЗ КАКОЙ БИОТКАНИ ИЗГОТАВЛИВАЮТ БИОПРОТЕЗЫ?

КСЕНОТКАНЬ: ТКАНЬ ЧУЖЕРОДНОГО ПРОИСХОЖДЕНИЯ

- Перикард теленка/свиньи;
- Клапаны свиньи (аортальный, легочный, митральный)
- Ксеноткань обрабатывают химическими агентами, образующими ковалентные сшивки между белковыми макромолекулами внеклеточного матрикса – коллагеном, эластином и др.
- В качестве стабилизирующего сшивающего агента наиболее часто применяют глутаровый альдегид (ГА), достигая хороших механических характеристик ткани.

$$Coll - N = CH - (CH_2)_3 - CH = N - Coll$$

 HO! Такая обработка приводит к образованию на поверхности биоткани свободных альдегидных групп, потенциирующих кальциноз и цитотоксичность

Формирование хитозанового покрытия

Формирование тритиевой метки

Gallyamov et al. // Mater. Sci. Eng. C 2014, 37, 127

ИК НПВО спектроскопия

оптическая плотность

Тестирование *in vivo* (подкожно, крысы)

Морфология перикарда: анализ СЭМ

исходный, GA- экспонир. в угольной экспонир. в угольной стабилизированный к-те без хитозана к-те с хитозаном

Механические свойства перикарда

число образцов	предел прочности, σ _{ts} , МПа	деформа- ция при разрыве, ɛ, %	модуль Юнга (нач.), Е _{low} , МПа	модуль Юнга (кон.), E _{high} , МПа			
	UCX	одный перика	ард				
40	: 15.1 \pm 0.7	: 41 ± 2	: 5.7 ± 0.3	: 71 ± 1			
40	\perp : 7.3 ± 0.4	⊥: 41 ± 1	\perp : 4.6 ± 0.2	⊥: 37 ± 1			
	после угольн	ой кислоты (без хитозана				
16	: 17 ± 3	: 46 ± 2	: 3.6 ± 1.2	: 57 ± 3			
18	$\perp:9\pm3$	⊥: 41 ± 2	\perp : 2.9 ± 1.3	\perp : 33 ± 3			
после угольной кислоты с хитозаном							
18	: 17 ± 3	: 62 ± 2	: 6.0 ± 1.2	: 41 ± 2			
48	\perp : 7 ± 3	\perp : 42 ± 2	\perp : 4.7 ± 0.7	\perp : 23 ± 2			

GA-стабилизированный перикард теленка

Тестирование на биосовместимость

экстракция / связывание остаточного ГА

Бактерицидные свойства (log KOE)

	грамположительные				грамотрицательные			
после	S. aureus	S. haemoly ticus	B. cereus	C. albicans	Ps. aerugin osa	E. coli	E. cloacae	K. pneumo niae
	пер	икард с хи	тозаном,	нанесеннь	ім из угол	ьной кисло	оты	
иноку- ляции	нет КОЕ	нет КОЕ	2.92 ± 0.02	2.85 ± 0.01	1.67 ± 0.05	3.46 ± 0.01	2.68 ± 0.01	1.70 ± 0.06
инкуба- ции	нет КОЕ	нет КОЕ	2.93 ± 0.02	1.64 ± 0.03	0.95 ± 0.05	0.30 ± 0.04	нет КОЕ	нет КОЕ
	пери	кард, обра	ботанный	й в угольно	ой кислот	е без хито	озана	
иноку- ляции	3.18 ± 0.01	3.74 ± 0.01	2.56 ± 0.03	2.53 ± 0.02	2.25 ± 0.03	1.92 ± 0.01	3.23 ± 0.01	1.40 ± 0.06
инкуба- ции			2.59 ± 0.08			нет КОЕ	2.34 ± 0.04	нет КОЕ
	контроль: биосовместимая аллогенная ткань							
иноку- ляции	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5
инкуба- ции	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5

Гистологические исследования

Окраска гематоксилином/ эозином (а) и по Ван Гизону (фуксин/пикрин. к-та) (b), оптическое увеличение 400×, размер кадра 500 × 376 мкм², масштабная линия 50 мкм

Организация коллагеновых фибрилл несущественно нарушена экспозицией в угольной кислоте и нанесением хитозана (о присутствии последнего может свидетельствовать несколько уменьшенная фуксинофилия)

Gallyamov et al // J Biomed Mat Res B Appl Biomat 2017

Стабильность хитозанового покрытия *in vivo* (подкожно, крысы)

молекуляр- ная масса хитозана, кДа деацети- лирования, % ки м	степень деацети-	раствори- мость в	масса хитозана в матрице перикарда, мг		
	угольной кислоте, мг/мл	до <i>in vivo</i> эксперимента	после <i>in vivo</i> эксперимента		
50	95	8 ± 2	0.047 ± 0.001	0.046 ± 0.014	
100	97	3 ± 1	0.032 ± 0.002	0.033 ± 0.006	
210	84	10 ± 2	0.109 ± 0.008	0.085 ± 0.011	

масса матрицы ~ 10.6 ± 1.4 мг

Детектировано методом тритиевой метки. ANOVA: для хитозана-50 и хитозана-100 до и после *in vivo* эксперимента разница в количестве хитозана несущественна, для хитозана-210 – существенна (уменьшение) Gallyamov *et al.* // J. Biomed. Mat. Res. B Appl. Biomat. 2017

Возможные сценарии резорбции хитозана

сценарий І

сценарий II

вероятно, не подвергается резорбции хитозан, ковалентно связанный (ГА) и/или находящийся в порах

Gallyamov et al. // J. Biomed. Mat. Res. B Appl. Biomat. 2017