Бифазные системы с диоксидом углерода под давлением

Бифазные системы H₂O + CO₂ под давлением

♦ Абсолютная биосовместимость

Присутствие угольной кислоты в водной фазе такой системы позволяет растворять в ней некоторые полимеры, приобретающие свойства поликатионов в кислых средах

Бифазные системы $H_2O + CO_2 под$ давлением $H_2O + CO_2 rod$ $H_2O + CO_2 \Leftrightarrow H_2CO_3 H_2CO_3^* \Leftrightarrow H^+ + HCO_3^-$

p

Diamond et al. // Fluid Phase Equilibria 2003, 208, 265

Table IV. Measured pH Values of the Water-CO₂ System at Different Process Temperatures

rocess pressure (P), MPa	measured pH at 32 °C	measured pH at 37 °C	measured pH at 42 °C		
0	5.68 ± 0.04	5.70 ± 0.14	5.80 ± 0.00		
0.690	3.55 ± 0.01	3.57 ± 0.01	3.66 ± 0.01		
1.379	3.42 ± 0.00	3.44 ± 0.00	3.51 ± 0.01		
2.069	3.35 ± 0.01	3.36 ± 0.01	3.42 ± 0.00		
2.758	3.30 ± 0.01	3.29 ± 0.01	3.33 ± 0.01		
4.137	3.23 ± 0.00	3.23 ± 0.01	3.26 ± 0.00		
5.516	3.19 ± 0.00	3.20 ± 0.01	3.24 ± 0.01		
6- 5- E 4- 3- 2-	·		Predicted pH		
1 1	10 Process Pre	20 ssure, P(MPa)	30		

Meyssami et al. // Biotechnol. Prog. 1992, 8, 149

Бифазные системы H₂O + CO₂ под давлением

Хитозан: растворимый поликатион в кислых водных средах (угольная кислота)

 Композиции из хитозана, приготовленные в присутствии угольной кислоты, перспективны для биомедицинских приложений

Протезы клапанов сердца центр

Центр сердечно-сосудистой хирургии имени А.Н. Бакулева РАМН

- Механические протезы
 - + Прочность
 - + Долговечность
 - Пожизненная антикоагулянтная терапия
 - Влияние на трансклапанный поток крови
 - Тромбоз, образование фистул, нарастание паннуса, сужение просвета, эндокардит,...

- Протезы из биологических тканей (биопротезы)
 - Не требуется антикоагулянтная терапия
 - + По гемодинамическим характеристикам близки нативным
 - Развитие тканевой дегенерации
 - Кальцификация
 - Срок службы 10–12 лет

ИЗ КАКОЙ БИОТКАНИ ИЗГОТАВЛИВАЮТ БИОПРОТЕЗЫ?

КСЕНОТКАНЬ: ТКАНЬ ЧУЖЕРОДНОГО ПРОИСХОЖДЕНИЯ

- Перикард теленка/свиньи;
- Клапаны свиньи (аортальный, легочный, митральный)
- Ксеноткань обрабатывают химическими агентами, образующими ковалентные сшивки между белковыми макромолекулами внеклеточного матрикса – коллагеном, эластином и др.
- В качестве стабилизирующего сшивающего агента наиболее часто применяют глутаровый альдегид (ГА), достигая хороших механических характеристик ткани.

$$Coll - N = CH - (CH_2)_3 - CH = N - Coll$$

 HO! Такая обработка приводит к образованию на поверхности биоткани свободных альдегидных групп, потенциирующих кальциноз и цитотоксичность

Формирование хитозанового покрытия

Формирование тритиевой метки

Gallyamov et al. // Mater. Sci. Eng. C 2014, 37, 127

ИК НПВО спектроскопия

оптическая плотность

Тестирование *in vivo* (подкожно, крысы)

Морфология перикарда: анализ СЭМ

исходный, GA- экспонир. в угольной экспонир. в угольной стабилизированный к-те без хитозана к-те с хитозаном

Механические свойства перикарда

число образцов	предел прочности, σ _{ts} , МПа	деформа- ция при разрыве, ɛ, %	модуль Юнга (нач.), Е _{low} , МПа	модуль Юнга (кон.), E _{high} , МПа
	UCX	одный перика	ард	
40	$\ : 15.1 \pm 0.7$: 41 ± 2	: 5.7 ± 0.3	: 71 ± 1
40	\perp : 7.3 ± 0.4	⊥: 41 ± 1	\perp : 4.6 ± 0.2	⊥: 37 ± 1
	после угольн	ой кислоты (без хитозана	
16	: 17 ± 3	: 46 ± 2	: 3.6 ± 1.2	: 57 ± 3
18	$\perp:9\pm3$	⊥: 41 ± 2	\perp : 2.9 ± 1.3	\perp : 33 ± 3
	после угольн	юй кислоты	с хитозаном	
18	: 17 ± 3	: 62 ± 2	: 6.0 ± 1.2	: 41 ± 2
48	\perp : 7 ± 3	\perp : 42 ± 2	\perp : 4.7 ± 0.7	\perp : 23 ± 2

GA-стабилизированный перикард теленка

Тестирование на биосовместимость

экстракция / связывание остаточного ГА

Бактерицидные свойства (log KOE)

	грамположительные				I	грамотрицательные			
после	S. aureus	S. haemoly ticus	B. cereus	C. albicans	Ps. aerugin osa	E. coli	E. cloacae	K. pneumo niae	
	пер	икард с хи	тозаном,	нанесеннь	ым из угол	ьной кисло	оты		
иноку- ляции	нет КОЕ	нет КОЕ	2.92 ± 0.02	2.85 ± 0.01	1.67 ± 0.05	3.46 ± 0.01	2.68 ± 0.01	1.70 ± 0.06	
инкуба- ции	нет КОЕ	нет КОЕ	2.93 ± 0.02	1.64 ± 0.03	0.95 ± 0.05	0.30 ± 0.04	нет КОЕ	нет КОЕ	
	пери	кард, обра	ботанный	й в угольно	ой кислот	е без хито	озана		
иноку- ляции	3.18 ± 0.01	3.74 ± 0.01	2.56 ± 0.03	2.53 ± 0.02	2.25 ± 0.03	1.92 ± 0.01	3.23 ± 0.01	1.40 ± 0.06	
инкуба- ции			2.59 ± 0.08			нет КОЕ	2.34 ± 0.04	нет КОЕ	
		контрол	ь: биосові	местимая	аллогенна	ая ткань			
иноку- ляции	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	
инкуба- ции	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	~ 5	

Гистологические исследования

Окраска гематоксилином/ эозином (а) и по Ван Гизону (фуксин/пикрин. к-та) (b), оптическое увеличение 400×, размер кадра 500 × 376 мкм², масштабная линия 50 мкм

Организация коллагеновых фибрилл несущественно нарушена экспозицией в угольной кислоте и нанесением хитозана (о присутствии последнего может свидетельствовать несколько уменьшенная фуксинофилия)

Gallyamov et al // J Biomed Mat Res B Appl Biomat 2017

Стабильность хитозанового покрытия *in vivo* (подкожно, крысы)

молекуляр- ная масса хитозана, кДа	степень деацети-	раствори- мость в	масса хитозана перикарда, мг	в матрице	
	лирования, %	угольной кислоте, мг/мл	до <i>in vivo</i> эксперимента	после <i>in vivo</i> эксперимента	
50	95	8 ± 2	0.047 ± 0.001	0.046 ± 0.014	
100	97	3 ± 1	0.032 ± 0.002	0.033 ± 0.006	
210	84	10 ± 2	0.109 ± 0.008	0.085 ± 0.011	

масса матрицы ~ 10.6 ± 1.4 мг

Детектировано методом тритиевой метки. ANOVA: для хитозана-50 и хитозана-100 до и после *in vivo* эксперимента разница в количестве хитозана несущественна, для хитозана-210 – существенна (уменьшение) Gallyamov *et al.* // J. Biomed. Mat. Res. B Appl. Biomat. 2017

Возможные сценарии резорбции хитозана

сценарий І

сценарий II

вероятно, не подвергается резорбции хитозан, ковалентно связанный (ГА) и/или находящийся в порах

Gallyamov et al. // J. Biomed. Mat. Res. B Appl. Biomat. 2017

Морфология макромолекул хитозана в растворах угольной кислоты

АСМ изображения хитозановых наноструктур (степень деацетилирования 85%, молекулярная масса 194 кг/моль) на поверхности слюды, адсорбированных из растворов в угольной кислоте $(p(CO_2) = 300 \text{ атм}, T$ = 24 °C, С (хитозана) = 0,2 мг/мл). Размер кадра: верхний ряд: 4×4 мкм², средний ряд: 2×2 мкм², нижний ряд (a-f) дополнительно увеличенные выделенные области, шкала высот: 10 нм, масштабная линия: 500 нм

Khokhlova et al. // Colloid Polym. Sci. 2012, 290, 1471

Гипотеза о мономолекулярности хитозановых наноструктур

АСМ изображения **хитозановых наноструктур** на поверхности слюды, адсорбированных из раствора в **угольной кислоте** ($p(CO_2) = 300$ атм, T = 25 °C, C(хитозана) = 0,2 мг/мл). Образцы различаются по молекулярной массе Мп и степени деацетилирования DD: a) 80 кг/моль, 84%, b) 130 кг/моль, 70%, c) 210 кг/моль, 70%, d) 240 кг/моль, 74%, e) 380 кг/моль, 67%, f) 680 кг/моль, 74%. Размер кадра 2×2 мкм, шкала высот: 10 нм, масштабная линия: 500 нм

Образец	Mn		н	חח
хитозана		•,	н,	%
N⁰		пм		
448869	80	45	0,8	84
419419	150	35	0,6	70
448877	270	50	0,9	74
417963	320	35	0,7	70
c3646	320	35	0,7	67
48165	790	45	0,9	74

Pigaleva et al. // Macromolecules 2014, 47, 5749

Возможная причина организации макромолекул хитозана в наноразмерные агрегаты в растворах угольной кислоты

Маннинговская конденсация противоионов:

Использование описанных выше систем для стабилизации металлических наночастиц

 <u>Стабилизация с</u> <u>помощью:</u>

Сополимеров (ПС-блок-П4ВП) ✓ КАТАЛИЗ

 Стабилизация металлических наночастиц с помощью поликатионов в растворах угольной кислоты

Растворение полимеров в угольной кислоте и стабилизация металлических наночастиц

Композиты хитозана с наночастицами Ag

Novikov et al. // Carbohydrate Polym. 2018, 190, 103

Композиты хитозана с наночастицами Ад

Novikov et al. // Carbohydrate Polym. 2018, 190, 103

Композиты хитозана с наночастицами Ag

0

0

OCH₃

Композиты хитозана с наночастицами Ag

Novikov et al. // Carbohydrate Polym. 2018, 190, 103

Композиты хитозана с наночастицами Ag

Композиты хитозана с наночастицами Ag

*М*_w=210 кг/моль

Композиты хитозана с наночастицами Ag

вторичные хит:Ад 1:1

5:1

обратнорассеянные

Novikov et al. // Carbohydrate Polym. 2018, 190, 103

СЭМ

Композиты хитозана с наночастицами Ag

без обработки водородом с обработкой водородом хит:Ag = 2:1

Композиты хитозана с наночастицами Ад после H₂

хит:Ag 1:1 2 ПЭМ *М*_w=1300 кг/моль

Композиты хитозана с наночастицами Ag

Nº	Composition	Molar ratio chitosan:AgNO ₃	Form	Average size, nm (TEM)
	Chitosan with low molecula	/mol, Mn _{chit} =77 kg/mol, DD=	:84%)	
1	abitagan L AgNO	1.1	gel	3±1
I	$CIIIIOSAII + AGINO_3$	1.1	sol	80±20
2	chitosan + AgNO	2.1	gel	3±1
2		2.1	sol	30±10
3	chitosan + AgNO	5.1	gel	5±2
5	chilosan + Agrio ₃	0.1	sol	30±12
Λ	chitosan + AaNO	10.1	gel	2.1±0.4
4	cintosan + Agivo ₃	10.1	sol	14±6
5	$chitosan \pm \Lambda a NO \pm a oninin$	0.1	gel	2.3±0.5
5	$CIIICOSall + AgivO_3 + geriipili$	2.1	sol	27±12
	Chitosan with medium molecula	kg/mol, Mn _{chit} =240 kg/mol, [DD=74%)	
6	chitoson (AgNO	1.1	gel	3±1
0	$CIIIIOSAII + AginO_3$	1.1	sol	50±20
7	chitoson (AgNO	2.1	gel	3±1
1	$CIIIIOSAII + AginO_3$	2.1	sol	37±9
Q	$chitoson + \Lambda aNO$	5.1	gel	5±1
0	$CIIIIOSAIT + AGINO_3$	5.1	sol	50±17
0	chitoson (AgNO	10.1	gel	3±1
9	$CIIIIOSAIT + AGNO_3$	10.1	sol	42±18
10	chitoson L AgNO	20.1	gel	2.0±0.4
10	$CIIIIOSAIT + AGNO_3$	20.1	sol	40±12
			gel	4±2
11	chitosan + AgNO ₃ + genipin	2:1	gel after H ₂ treatment	57±18

Композиты хитозана с наночастицами Ад

хит+ПГХ+Ад

хит+ПГХ+Ад +H₂

ПЭМ

Композиты хитозана с наночастицами Ag

на просвет

ИΚ

НПВО

Композиты хитозана с наночастицами Ад Сhitosan solution Сhit-Ag Chit-Ag-5min

УФ-вид

Композиты хитозана с наночастицами Ag

РДА

Novikov et al. // Colloid Polym. Sci. 2020, 298, 1135

РФЭС

Композиты хитозана с наночастицами Ag

Sample		C 1s					N 1s				
	Group	С-С/ С-Н	C-N	C-OH	0-C-0	C(O)N, C(O)O	CO ₃	NH ₂	N(O)C	NH ₃ +	NO ₃ , ONO ₂
	Peak	C1	C2	C3	C4	C5	C6	N1	N2	N3	N4
	E, eV	285.0	285.7	286.7	288.2	288.7	289.43	399.6	400.63	402.2	
Chit	W, eV	0.93	1.08	1.04	0.95	1.00	1.10	1.16	1.16	1.16	
	l _{rel}	0.35	0.10	0.41	0.10	0.02	0.01	0.86	0.11	0.02	
	E, eV	285.0	285.6	286.7	288.2	289.4	-	400.2		403.4	406.9
Chit-Ag	W, eV	0.88	1.05	1.02	1.02	1.2	-	1.13		1.05	1.02
	l _{rel}	0.21	0.15	0.48	0.15	0.02	-	0.58		0.06	0.36
Chit-Ag- 1month	E, eV	285.2	285.8	286.8	288.2	289.4	292.5	400.4		403.6	407.1
	W, eV	0.94	1.05	1.01	0.96	1.2	1.04	1.13		1.01	1.02
	l _{rel}	0.29	0.13	0.43	0.13	0.02	0.01	0.64		0.05	0.30

Композиты хитозана с наночастицами Ag

РФЭС